Regrettably, these conclusions can not be confirmed through DNA fingerprinting which reduces validation and reliability, therefore, further analysis to verify

Regrettably, these conclusions can not be confirmed through DNA fingerprinting which reduces validation and reliability, therefore, further analysis to verify

DNA-17 Profiling. [Online]. 2019. Crown Prosecution Service. Available from: https://www.cps.gov.uk/legal-guidance/dna-17-profiling [Accessed: 5 May 2019].

  • Ferembach, D., (1980). Tips for age and sex diagnoses of skeletons. Journal of Human Evolution. 9(7), 517-549. Available from: doi:10.1016/0047-2484(80)90061-5.
  • Giles, E. and Elliot, O., (1963). Sex determination by discriminant function analysis of crania. American Journal of Physical Anthropology. 21(1), 53-68. Available from: doi:10.1002/ajpa.1330210108
  • Giles, E., (1970). Discriminant function sexing associated with human being skeleton. Personal Identification in Mass Disasters. In Stewart TD (ed.)99-107.
  • Krogman, W., (1962). The human being skeleton in forensic medicine. American Journal of Orthodontics. 49(6), 474. Available from: doi:10.1016/0002-9416(63)90175-1.
  • McPherson, M., Quirke, P. & Taylor, G., (1992). PCR: a practical approach. Oxford, IRL.
  • Meindl, R. and Lovejoy, C., (1985). Ectocranial suture closure: A revised way of the determination of skeletal age at death in line with the lateral-anterior sutures. American Journal of Physical Anthropology. 68(1), 57-66. Available from: doi:10.1002/ajpa.1330680106.
  • Miles, A., (1963). Dentition within the Estimation of Age. Journal of Dental Research. 42(1), 255-263. Available from: doi:10.1177/00220345630420012701
  • Molleson, T and Cox, M., (1993). The Spitalfields Project, Vol. 2: The Anthropology. The Middling Sort, Research Report 86. Council for British Archaeology: York.
  • NIDDK., (2012). Acromegaly | NIDDK. [online] National Institute of Diabetes and Digestive and Kidney Diseases. Offered at: https://www.niddk.nih.gov/health-information/endocrine-diseases/acromegaly [Viewed 21 April 2019].
  • Phenice, T., (1969). A newly developed visual way of sexing the os pubis. American Journal of Physical Anthropology. 30(2), 297-301. Available from: doi:10.1002/ajpa.1330300214.
  • Rissech, C., Estabrook, G., Cunha, E. and Malgosa, A., (2006). Using the Acetabulum to Estimate Age at Death of Adult Males*. Journal of Forensic Sciences.  51(2), 213-229. Available from: doi:10.1111/j.1556-4029.2006.00060.x
  • Scheuer, L. & Black, S., (2004). The juvenile skeleton. London, Elsevier Academic Press.
  • Sutherland, L. and Suchey, J., (1991) Use of the Ventral Arc in Pubic Sex Determination. Journal of Forensic Sciences. 36(2), 13051J. Available from: doi:10.1520/jfs13051j.
  • Todd, T., (1921). Age changes in the pubic bone. American Journal of Physical Anthropology. 4(1), 1-70. Available from: doi:10.1002/ajpa.1330040102
  • Trotter, M., (1970). Estimation of stature from intact long limb bones, in Stewart, T.D. (ed.), Personal Identification in Mass Disasters: National Museum of Natural History, Washington, 71-83.
  • Appendices

    Appendix A

    Feature

    Measurement (mm)

    Cranial length

    187.22

    Cranial breadth

    111.47

    Basion-bregma height

    138.67

    Bizygomatic breadth

    131.39

    Basion prosthion length

    121.63

    Nasion-prosthion line

    68.21

    Maxillo-alveolar breadth

    67.25

    Height associated with processus mastoideus

    36.67

    These measurements were then inputted to the formula below to find out sex from the skull.

    Discriminant function formula (Giles & Elliot, 1963):

    (Cranial length*3.107) + (Cranial breadth*-4.643) + (Basion-bregma height*5.786) + (bizygomatic breadth*14.821) + (Basion prosthion length*1.000) + (Nasion-prosthion line*2.714) + (Maxillo-alveolar breadth*-5.179) + (Height of this processus mastoideus*6.071)

    If result is larger than 2676.39, the individual is male, if smaller than 2676.39, the individual is female.

    Appendix B

    Feature

    Measurement (mm)

    Hipbone height (A)

    212

    Iliac breadth (B)

    161

    Pubis length (C)

    71.675

    Ischium length (D)

    88.41

    Femur head diameter (E)

    45.45

    Epicondylar breadth of femur (F)

    75.26

    There measurements where then inputted to the formula below Albanese’s (2003) to find out sex from the pelvis and femur.

    Probability M/F=1(1+e–Z)

    Model 1, Z = -61.5345 + (0.595*A) – (0.5192*B) – (1.1104*D) + (1.1696*E) + (0.5893*F)

    Model 2, Z = -40.5313 + (0.2572*A) – (0.9852*C) + (0.7303*E) + (0.3177*F)

    Model 3, Z = -30.359 + (0.4323*A) – (0.2217*B) – (0.7404*C) + (0.3412*D)

    If P is more than 0.5, the individual is male, if P is not as much as 0.5, the individual is female.

    Appendix C

    variety of corresponding states and ages for every associated with 7 acetabulum variables Rissech’s (2006)

    1. Acetabular groove
      • State 1 – predicted age: 41.6
    2. Acetabular rim shape
      • State 3 – predicted age: 45.9
    3. Acetabular rim porosity
      • State 2 – predicted age: 39
    4. Apex activity
      • State 1 – predicted age: 38.2
    5. Activity in the external edge of the acetabular fossa
      • State 2 – predicted age: 32.3
    6. Activity associated with acetabular fossa
      • State 3 – predicted age: 48.1
    7. Porosities associated with acetabular fossa Share this: Facebook Twitter Reddit LinkedIn WhatsApp  

    https://medium.com/@vladimirtrofimov049/best-3-biology-essay-samples-926566c2efb4

    Therefore, to locate a match, AFLP is repeated ensuring there was adequate, unfragmented DNA along with a suitable, high specificity primer. Primer dimers at the end of lane 9 suggests the primer concentration was excessive, therefore, to prevent allelic dropout which might assume homozygosity, lower concentrations is used when repeating.

    AFLP requires high quality and quantity of DNA to prevent allelic dropout, nonetheless, it’s likely that this can not be achieved using this DNA sample. Therefore, DNA-17 might provide greater results since it requires less DNA because of improved sensitivity and discrimination between profiles (Crown Prosecution Service, 2019).

    Conclusion

    After analysing all results, it’s possible to estimate it was a European male aged between 32 and 43 who had been 174cm tall, managing acromegaly. The likely reason for death is co-morbidity associated with acromegaly progression. Regrettably, these conclusions can not be confirmed through DNA fingerprinting which reduces validation and reliability, therefore, further analysis to verify this individual’s identity could consist of more reliable methods involving molecular biology and bone chemistry.

    Recommendations

    • Albanese, J., (2003).  A Metric Method for Sex Determination utilizing the Hipbone while the Femur. Journal of Forensic Sciences. 48(2), 2001378. Available from: doi:10.1520/jfs2001378.
    • Bass, W., (1978). Individual osteology. Columbia, Mo., Missouri Archaeological Society, 196-208.
    • Black, T., (1978). Sexual dimorphism within the tooth-crown diameters associated with deciduous teeth. American Journal of Physical Anthropology. 48(1), 77-82. Available from: doi:10.1002/ajpa.1330480111.
    • Brooks, S. and Suchey, J., (1990). Skeletal age determination in line with the os pubis: an evaluation associated with Acsádi-Nemeskéri and Suchey-Brooks techniques. Human Evolution. 5(3), 227-238. Available from: doi:10.1007/bf02437238.
    • Carr, L., (1962). Eruption ages of permanent teeth. Australian Dental Journal. 7(5), 367-373. Available from: doi:10.1111/j.1834-7819.1962.tb04884.x.
    • Chapman, I., (2017). Gigantism and Acromegaly – Hormonal and Metabolic Disorders – MSD Manual Consumer Version. [Online]. 2017. MSD Manual Consumer Version. Available from: https://www.msdmanuals.com/en-gb/home/hormonal-and-metabolic-disorders/pituitary-gland-disorders/gigantism-and-acromegaly [Accessed: 27 April 2019].
    • Church, MS., (1995). Determination of Race from the Skeleton through Forensic Anthropological techniques. Forensic Science Review. 7(1), 1-39
    • Crown Prosecution Service., (2019). DNA-17 Profiling. [Online]. 2019. Crown Prosecution Service. Available from: https://www.cps.gov.uk/legal-guidance/dna-17-profiling [Accessed: 5 May 2019].
    • Ferembach, D., (1980). Tips for age and sex diagnoses of skeletons. Journal of Human Evolution. 9(7), 517-549. Available from: doi:10.1016/0047-2484(80)90061-5.
    • Giles, E. and Elliot, O., (1963). Sex determination by discriminant function analysis of crania. American Journal of Physical Anthropology. 21(1), 53-68. Available from: doi:10.1002/ajpa.1330210108
    • Giles, E., (1970). Discriminant function sexing associated with human being skeleton. Personal Identification in Mass Disasters. In Stewart TD (ed.)99-107.
    • Krogman, W., (1962). The human being skeleton in forensic medicine. American Journal of Orthodontics. 49(6), 474. Available from: doi:10.1016/0002-9416(63)90175-1.
    • McPherson, M., Quirke, P. & Taylor, G., (1992). PCR: a practical approach. Oxford, IRL.
    • Meindl, R. and Lovejoy, C., (1985). Ectocranial suture closure: A revised way of the determination of skeletal age at death in line with the lateral-anterior sutures. American Journal of Physical Anthropology. 68(1), 57-66. Available from: doi:10.1002/ajpa.1330680106.
    • Miles, A., (1963). Dentition within the Estimation of Age. Journal of Dental Research. 42(1), 255-263. Available from: doi:10.1177/00220345630420012701
    • Molleson, T and Cox, M., (1993). The Spitalfields Project, Vol. 2: The Anthropology. The Middling Sort, Research Report 86. Council for British Archaeology: York.
    • NIDDK., (2012). Acromegaly | NIDDK. [online] National Institute of Diabetes and Digestive and Kidney Diseases. Offered at: https://www.niddk.nih.gov/health-information/endocrine-diseases/acromegaly [Viewed 21 April 2019].
    • Phenice, T., (1969). A newly developed visual way of sexing the os pubis. American Journal of Physical Anthropology. 30(2), 297-301. Available from: doi:10.1002/ajpa.1330300214.
    • Rissech, C., Estabrook, G., Cunha, E. and Malgosa, A., (2006). Using the Acetabulum to Estimate Age at Death of Adult Males*. Journal of Forensic Sciences.  51(2), 213-229. Available from: doi:10.1111/j.1556-4029.2006.00060.x
    • Scheuer, L. & Black, S., (2004). The juvenile skeleton. London, Elsevier Academic Press.
    • Sutherland, L. and Suchey, J., (1991) Use of the Ventral Arc in Pubic Sex Determination. Journal of Forensic Sciences. 36(2), 13051J. Available from: doi:10.1520/jfs13051j.
    • Todd, T., (1921). Age changes in the pubic bone. American Journal of Physical Anthropology. 4(1), 1-70. Available from: doi:10.1002/ajpa.1330040102
    • Trotter, M., (1970). Estimation of stature from intact long limb bones, in Stewart, T.D. (ed.), Personal Identification in Mass Disasters: National Museum of Natural History, Washington, 71-83.

    Appendices

    Appendix A

    Feature

    Measurement (mm)

    Cranial length

    187.22

    Cranial breadth

    111.47

    Basion-bregma height

    138.67

    Bizygomatic breadth

    131.39

    Basion prosthion length

    121.63

    Nasion-prosthion line

    68.21

    Maxillo-alveolar breadth

    67.25

    Height associated with processus mastoideus

    36.67

    These measurements were then inputted to the formula below to find out sex from the skull.

    Discriminant function formula (Giles & Elliot, 1963):

    (Cranial length*3.107) + (Cranial breadth*-4.643) + (Basion-bregma height*5.786) + (bizygomatic breadth*14.821) + (Basion prosthion length*1.000) + (Nasion-prosthion line*2.714) + (Maxillo-alveolar breadth*-5.179) + (Height of this processus mastoideus*6.071)

    If result is larger than 2676.39, the individual is male, if smaller than 2676.39, the individual is female.

    Appendix B

    Feature

    Measurement (mm)

    Hipbone height (A)

    212

    Iliac breadth (B)

    161

    Pubis length (C)

    71.675

    Ischium length (D)

    88.41

    Femur head diameter (E)

    45.45

    Epicondylar breadth of femur (F)

    75.26

    There measurements where then inputted to the formula below Albanese’s (2003) to find out sex from the pelvis and femur.

    Probability M/F=1(1+e–Z)

    Model 1, Z = -61.5345 + (0.595*A) – (0.5192*B) – (1.1104*D) + (1.1696*E) + (0.5893*F)

    Model 2, Z = -40.5313 + (0.2572*A) – (0.9852*C) + (0.7303*E) + (0.3177*F)

    Model 3, Z = -30.359 + (0.4323*A) – (0.2217*B) – (0.7404*C) + (0.3412*D)

    If P is more than 0.5, the individual is male, if P is not as much as 0.5, the individual is female.

    Appendix C

    variety of corresponding states and ages for every associated with 7 acetabulum variables Rissech’s (2006)

    1. Acetabular groove
      • State 1 – predicted age: 41.6
    2. Acetabular rim shape
      • State 3 – predicted age: 45.9
    3. Acetabular rim porosity
      • State 2 – predicted age: 39
    4. Apex activity
      • State 1 – predicted age: 38.2
    5. Activity in the external edge of the acetabular fossa
      • State 2 – predicted age: 32.3
    6. Activity associated with acetabular fossa
      • State 3 – predicted age: 48.1
    7. Porosities associated with acetabular fossa Share this: Facebook Twitter Reddit LinkedIn WhatsApp  

    AFLP requires high quality and quantity of DNA to prevent allelic dropout, nonetheless, it’s likely that this can not be achieved using this DNA sample. Therefore, DNA-17 might provide greater results since it requires less DNA because of improved sensitivity and discrimination between profiles (Crown Prosecution Service, 2019).

    Conclusion

    After analysing all results, it’s possible to estimate it was a European male aged between 32 and 43 who had been 174cm tall, managing acromegaly. The likely reason for death is co-morbidity associated with acromegaly progression. Regrettably, these conclusions can not be confirmed through DNA fingerprinting which reduces validation and reliability, therefore, further analysis to verify this individual’s identity could consist of more reliable methods involving molecular biology and bone chemistry.

    Recommendations

    • Albanese, J., (2003).  A Metric Method for Sex Determination utilizing the Hipbone while the Femur. Journal of Forensic Sciences. 48(2), 2001378. Available from: doi:10.1520/jfs2001378.
    • Bass, W., (1978). Individual osteology. Columbia, Mo., Missouri Archaeological Society, 196-208.
    • Black, T., (1978). Sexual dimorphism within the tooth-crown diameters associated with deciduous teeth. American Journal of Physical Anthropology. 48(1), 77-82. Available from: doi:10.1002/ajpa.1330480111.
    • Brooks, S. and Suchey, J., (1990). Skeletal age determination in line with the os pubis: an evaluation associated with Acsádi-Nemeskéri and Suchey-Brooks techniques. Human Evolution. 5(3), 227-238. Available from: doi:10.1007/bf02437238.
    • Carr, L., (1962). Eruption ages of permanent teeth. Australian Dental Journal. 7(5), 367-373. Available from: doi:10.1111/j.1834-7819.1962.tb04884.x.
    • Chapman, I., (2017). Gigantism and Acromegaly – Hormonal and Metabolic Disorders – MSD Manual Consumer Version. [Online]. 2017. MSD Manual Consumer Version. Available from: https://www.msdmanuals.com/en-gb/home/hormonal-and-metabolic-disorders/pituitary-gland-disorders/gigantism-and-acromegaly [Accessed: 27 April 2019].
    • Church, MS., (1995). Determination of Race from the Skeleton through Forensic Anthropological techniques. Forensic Science Review. 7(1), 1-39
    • Crown Prosecution Service., (2019). DNA-17 Profiling. [Online]. 2019. Crown Prosecution Service. Available from: https://www.cps.gov.uk/legal-guidance/dna-17-profiling [Accessed: 5 May 2019].
    • Ferembach, D., (1980). Tips for age and sex diagnoses of skeletons. Journal of Human Evolution. 9(7), 517-549. Available from: doi:10.1016/0047-2484(80)90061-5.
    • Giles, E. and Elliot, O., (1963). Sex determination by discriminant function analysis of crania. American Journal of Physical Anthropology. 21(1), 53-68. Available from: doi:10.1002/ajpa.1330210108
    • Giles, E., (1970). Discriminant function sexing associated with human being skeleton. Personal Identification in Mass Disasters. In Stewart TD (ed.)99-107.
    • Krogman, W., (1962). The human being skeleton in forensic medicine. American Journal of Orthodontics. 49(6), 474. Available from: doi:10.1016/0002-9416(63)90175-1.
    • McPherson, M., Quirke, P. & Taylor, G., (1992). PCR: a practical approach. Oxford, IRL.
    • Meindl, R. and Lovejoy, C., (1985). Ectocranial suture closure: A revised way of the determination of skeletal age at death in line with the lateral-anterior sutures. American Journal of Physical Anthropology. 68(1), 57-66. Available from: doi:10.1002/ajpa.1330680106.
    • Miles, A., (1963). Dentition within the Estimation of Age. Journal of Dental Research. 42(1), 255-263. Available from: doi:10.1177/00220345630420012701
    • Molleson, T and Cox, M., (1993). The Spitalfields Project, Vol. 2: The Anthropology. The Middling Sort, Research Report 86. Council for British Archaeology: York.
    • NIDDK., (2012). Acromegaly | NIDDK. [online] National Institute of Diabetes and Digestive and Kidney Diseases. Offered at: https://www.niddk.nih.gov/health-information/endocrine-diseases/acromegaly [Viewed 21 April 2019].
    • Phenice, T., (1969). A newly developed visual way of sexing the os pubis. American Journal of Physical Anthropology. 30(2), 297-301. Available from: doi:10.1002/ajpa.1330300214.
    • Rissech, C., Estabrook, G., Cunha, E. and Malgosa, A., (2006). Using the Acetabulum to Estimate Age at Death of Adult Males*. Journal of Forensic Sciences.  51(2), 213-229. Available from: doi:10.1111/j.1556-4029.2006.00060.x
    • Scheuer, L. & Black, S., (2004). The juvenile skeleton. London, Elsevier Academic Press.
    • Sutherland, L. and Suchey, J., (1991) Use of the Ventral Arc in Pubic Sex Determination. Journal of Forensic Sciences. 36(2), 13051J. Available from: doi:10.1520/jfs13051j.
    • Todd, T., (1921). Age changes in the pubic bone. American Journal of Physical Anthropology. 4(1), 1-70. Available from: doi:10.1002/ajpa.1330040102
    • Trotter, M., (1970). Estimation of stature from intact long limb bones, in Stewart, T.D. (ed.), Personal Identification in Mass Disasters: National Museum of Natural History, Washington, 71-83.

    Appendices

    Appendix A

    Feature

    Measurement (mm)

    Cranial length

    187.22

    Cranial breadth

    111.47

    Basion-bregma height

    138.67

    Bizygomatic breadth

    131.39

    Basion prosthion length

    121.63

    Nasion-prosthion line

    68.21

    Maxillo-alveolar breadth

    67.25

    Height associated with processus mastoideus

    36.67

    These measurements were then inputted to the formula below to find out sex from the skull.

    Discriminant function formula (Giles & Elliot, 1963):

    (Cranial length*3.107) + (Cranial breadth*-4.643) + (Basion-bregma height*5.786) + (bizygomatic breadth*14.821) + (Basion prosthion length*1.000) + (Nasion-prosthion line*2.714) + (Maxillo-alveolar breadth*-5.179) + (Height of this processus mastoideus*6.071)

    If result is larger than 2676.39, the individual is male, if smaller than 2676.39, the individual is female.

    Appendix B

    Feature

    Measurement (mm)

    Hipbone height (A)

    212

    Iliac breadth (B)

    161

    Pubis length (C)

    71.675

    Ischium length (D)

    88.41

    Femur head diameter (E)

    45.45

    Epicondylar breadth of femur (F)

    75.26

    There measurements where then inputted to the formula below Albanese’s (2003) to find out sex from the pelvis and femur.

    Probability M/F=1(1+e–Z)

    Model 1, Z = -61.5345 + (0.595*A) – (0.5192*B) – (1.1104*D) + (1.1696*E) + (0.5893*F)

    Model 2, Z = -40.5313 + (0.2572*A) – (0.9852*C) + (0.7303*E) + (0.3177*F)

    Model 3, Z = -30.359 + (0.4323*A) – (0.2217*B) – (0.7404*C) + (0.3412*D)

    If P is more than 0.5, the individual is male, if P is not as much as 0.5, the individual is female.

    Appendix C

    variety of corresponding states and ages for every associated with 7 acetabulum variables Rissech’s (2006)

    1. Acetabular groove
      • State 1 – predicted age: 41.6
    2. Acetabular rim shape
      • State 3 – predicted age: 45.9
    3. Acetabular rim porosity
      • State 2 – predicted age: 39
    4. Apex activity
      • State 1 – predicted age: 38.2
    5. Activity in the external edge of the acetabular fossa
      • State 2 – predicted age: 32.3
    6. Activity associated with acetabular fossa
      • State 3 – predicted age: 48.1
    7. Porosities associated with acetabular fossa Share this: Facebook Twitter Reddit LinkedIn WhatsApp  

    After analysing all results, it’s possible to estimate it was a European male aged between 32 and 43 who had been 174cm tall, managing acromegaly. The likely reason for death is co-morbidity associated with acromegaly progression. Regrettably, these conclusions can not be confirmed through DNA fingerprinting which reduces validation and reliability, therefore, further analysis to verify this individual’s identity could consist of more reliable methods involving molecular biology and bone chemistry.

    Recommendations

    • Albanese, J., (2003).  A Metric Method for Sex Determination utilizing the Hipbone while the Femur. Journal of Forensic Sciences. 48(2), 2001378. Available from: doi:10.1520/jfs2001378.
    • Bass, W., (1978). Individual osteology. Columbia, Mo., Missouri Archaeological Society, 196-208.
    • Black, T., (1978). Sexual dimorphism within the tooth-crown diameters associated with deciduous teeth. American Journal of Physical Anthropology. 48(1), 77-82. Available from: doi:10.1002/ajpa.1330480111.
    • Brooks, S. and Suchey, J., (1990). Skeletal age determination in line with the os pubis: an evaluation associated with Acsádi-Nemeskéri and Suchey-Brooks techniques. Human Evolution. 5(3), 227-238. Available from: doi:10.1007/bf02437238.
    • Carr, L., (1962). Eruption ages of permanent teeth. Australian Dental Journal. 7(5), 367-373. Available from: doi:10.1111/j.1834-7819.1962.tb04884.x.
    • Chapman, I., (2017). Gigantism and Acromegaly – Hormonal and Metabolic Disorders – MSD Manual Consumer Version. [Online]. 2017. MSD Manual Consumer Version. Available from: https://www.msdmanuals.com/en-gb/home/hormonal-and-metabolic-disorders/pituitary-gland-disorders/gigantism-and-acromegaly [Accessed: 27 April 2019].
    • Church, MS., (1995). Determination of Race from the Skeleton through Forensic Anthropological techniques. Forensic Science Review. 7(1), 1-39
    • Crown Prosecution Service., (2019). DNA-17 Profiling. [Online]. 2019. Crown Prosecution Service. Available from: https://www.cps.gov.uk/legal-guidance/dna-17-profiling [Accessed: 5 May 2019].
    • Ferembach, D., (1980). Tips for age and sex diagnoses of skeletons. Journal of Human Evolution. 9(7), 517-549. Available from: doi:10.1016/0047-2484(80)90061-5.
    • Giles, E. and Elliot, O., (1963). Sex determination by discriminant function analysis of crania. American Journal of Physical Anthropology. 21(1), 53-68. Available from: doi:10.1002/ajpa.1330210108
    • Giles, E., (1970). Discriminant function sexing associated with human being skeleton. Personal Identification in Mass Disasters. In Stewart TD (ed.)99-107.
    • Krogman, W., (1962). The human being skeleton in forensic medicine. American Journal of Orthodontics. 49(6), 474. Available from: doi:10.1016/0002-9416(63)90175-1.
    • McPherson, M., Quirke, P. & Taylor, G., (1992). PCR: a practical approach. Oxford, IRL.
    • Meindl, R. and Lovejoy, C., (1985). Ectocranial suture closure: A revised way of the determination of skeletal age at death in line with the lateral-anterior sutures. American Journal of Physical Anthropology. 68(1), 57-66. Available from: doi:10.1002/ajpa.1330680106.
    • Miles, A., (1963). Dentition within the Estimation of Age. Journal of Dental Research. 42(1), 255-263. Available from: doi:10.1177/00220345630420012701
    • Molleson, T and Cox, M., (1993). The Spitalfields Project, Vol. 2: The Anthropology. The Middling Sort, Research Report 86. Council for British Archaeology: York.
    • NIDDK., (2012). Acromegaly | NIDDK. [online] National Institute of Diabetes and Digestive and Kidney Diseases. Offered at: https://www.niddk.nih.gov/health-information/endocrine-diseases/acromegaly [Viewed 21 April 2019].
    • Phenice, T., (1969). A newly developed visual way of sexing the os pubis. American Journal of Physical Anthropology. 30(2), 297-301. Available from: doi:10.1002/ajpa.1330300214.
    • Rissech, C., Estabrook, G., Cunha, E. and Malgosa, A., (2006). Using the Acetabulum to Estimate Age at Death of Adult Males*. Journal of Forensic Sciences.  51(2), 213-229. Available from: doi:10.1111/j.1556-4029.2006.00060.x
    • Scheuer, L. & Black, S., (2004). The juvenile skeleton. London, Elsevier Academic Press.
    • Sutherland, L. and Suchey, J., (1991) Use of the Ventral Arc in Pubic Sex Determination. Journal of Forensic Sciences. 36(2), 13051J. Available from: doi:10.1520/jfs13051j.
    • Todd, T., (1921). Age changes in the pubic bone. American Journal of Physical Anthropology. 4(1), 1-70. Available from: doi:10.1002/ajpa.1330040102
    • Trotter, M., (1970). Estimation of stature from intact long limb bones, in Stewart, T.D. (ed.), Personal Identification in Mass Disasters: National Museum of Natural History, Washington, 71-83.

    Appendices

    Appendix A

    Feature

    Measurement (mm)

    Cranial length

    187.22

    Cranial breadth

    111.47

    Basion-bregma height

    138.67

    Bizygomatic breadth

    131.39

    Basion prosthion length

    121.63

    Nasion-prosthion line

    68.21

    Maxillo-alveolar breadth

    67.25

    Height associated with processus mastoideus

    36.67

    These measurements were then inputted to the formula below to find out sex from the skull.

    Discriminant function formula (Giles & Elliot, 1963):

    (Cranial length*3.107) + (Cranial breadth*-4.643) + (Basion-bregma height*5.786) + (bizygomatic breadth*14.821) + (Basion prosthion length*1.000) + (Nasion-prosthion line*2.714) + (Maxillo-alveolar breadth*-5.179) + (Height of this processus mastoideus*6.071)

    If result is larger than 2676.39, the individual is male, if smaller than 2676.39, the individual is female.

    Appendix B

    Feature

    Measurement (mm)

    Hipbone height (A)

    212

    Iliac breadth (B)

    161

    Pubis length (C)

    71.675

    Ischium length (D)

    88.41

    Femur head diameter (E)

    45.45

    Epicondylar breadth of femur (F)

    75.26

    There measurements where then inputted to the formula below Albanese’s (2003) to find out sex from the pelvis and femur.

    Probability M/F=1(1+e–Z)

    Model 1, Z = -61.5345 + (0.595*A) – (0.5192*B) – (1.1104*D) + (1.1696*E) + (0.5893*F)

    Model 2, Z = -40.5313 + (0.2572*A) – (0.9852*C) + (0.7303*E) + (0.3177*F)

    Model 3, Z = -30.359 + (0.4323*A) – (0.2217*B) – (0.7404*C) + (0.3412*D)

    If P is more than 0.5, the individual is male, if P is not as much as 0.5, the individual is female.

    Appendix C

    variety of corresponding states and ages for every associated with 7 acetabulum variables Rissech’s (2006)

    1. Acetabular groove
      • State 1 – predicted age: 41.6
    2. Acetabular rim shape
      • State 3 – predicted age: 45.9
    3. Acetabular rim porosity
      • State 2 – predicted age: 39
    4. Apex activity
      • State 1 – predicted age: 38.2
    5. Activity in the external edge of the acetabular fossa
      • State 2 – predicted age: 32.3
    6. Activity associated with acetabular fossa
      • State 3 – predicted age: 48.1
    7. Porosities associated with acetabular fossa Share this: Facebook Twitter Reddit LinkedIn WhatsApp  

    Recommendations

    • Albanese, J., (2003).  A Metric Method for Sex Determination utilizing the Hipbone while the Femur. Journal of Forensic Sciences. 48(2), 2001378. Available from: doi:10.1520/jfs2001378.
    • Bass, W., (1978). Individual osteology. Columbia, Mo., Missouri Archaeological Society, 196-208.
    • Black, T., (1978). Sexual dimorphism within the tooth-crown diameters associated with deciduous teeth. American Journal of Physical Anthropology. 48(1), 77-82. Available from: doi:10.1002/ajpa.1330480111.
    • Brooks, S. and Suchey, J., (1990). Skeletal age determination in line with the os pubis: an evaluation associated with Acsádi-Nemeskéri and Suchey-Brooks techniques. Human Evolution. 5(3), 227-238. Available from: doi:10.1007/bf02437238.
    • Carr, L., (1962). Eruption ages of permanent teeth. Australian Dental Journal. 7(5), 367-373. Available from: doi:10.1111/j.1834-7819.1962.tb04884.x.
    • Chapman, I., (2017). Gigantism and Acromegaly – Hormonal and Metabolic Disorders – MSD Manual Consumer Version. [Online]. 2017. MSD Manual Consumer Version. Available from: https://www.msdmanuals.com/en-gb/home/hormonal-and-metabolic-disorders/pituitary-gland-disorders/gigantism-and-acromegaly [Accessed: 27 April 2019].
    • Church, MS., (1995). Determination of Race from the Skeleton through Forensic Anthropological techniques. Forensic Science Review. 7(1), 1-39
    • Crown Prosecution Service., (2019). DNA-17 Profiling. [Online]. 2019. Crown Prosecution Service. Available from: https://www.cps.gov.uk/legal-guidance/dna-17-profiling [Accessed: 5 May 2019].
    • Ferembach, D., (1980). Tips for age and sex diagnoses of skeletons. Journal of Human Evolution. 9(7), 517-549. Available from: doi:10.1016/0047-2484(80)90061-5.
    • Giles, E. and Elliot, O., (1963). Sex determination by discriminant function analysis of crania. American Journal of Physical Anthropology. 21(1), 53-68. Available from: doi:10.1002/ajpa.1330210108
    • Giles, E., (1970). Discriminant function sexing associated with human being skeleton. Personal Identification in Mass Disasters. In Stewart TD (ed.)99-107.
    • Krogman, W., (1962). The human being skeleton in forensic medicine. American Journal of Orthodontics. 49(6), 474. Available from: doi:10.1016/0002-9416(63)90175-1.
    • McPherson, M., Quirke, P. & Taylor, G., (1992). PCR: a practical approach. Oxford, IRL.
    • Meindl, R. and Lovejoy, C., (1985). Ectocranial suture closure: A revised way of the determination of skeletal age at death in line with the lateral-anterior sutures. American Journal of Physical Anthropology. 68(1), 57-66. Available from: doi:10.1002/ajpa.1330680106.
    • Miles, A., (1963). Dentition within the Estimation of Age. Journal of Dental Research. 42(1), 255-263. Available from: doi:10.1177/00220345630420012701
    • Molleson, T and Cox, M., (1993). The Spitalfields Project, Vol. 2: The Anthropology. The Middling Sort, Research Report 86. Council for British Archaeology: York.
    • NIDDK., (2012). Acromegaly | NIDDK. [online] National Institute of Diabetes and Digestive and Kidney Diseases. Offered at: https://www.niddk.nih.gov/health-information/endocrine-diseases/acromegaly [Viewed 21 April 2019].
    • Phenice, T., (1969). A newly developed visual way of sexing the os pubis. American Journal of Physical Anthropology. 30(2), 297-301. Available from: doi:10.1002/ajpa.1330300214.
    • Rissech, C., Estabrook, G., Cunha, E. and Malgosa, A., (2006). Using the Acetabulum to Estimate Age at Death of Adult Males*. Journal of Forensic Sciences.  51(2), 213-229. Available from: doi:10.1111/j.1556-4029.2006.00060.x
    • Scheuer, L. & Black, S., (2004). The juvenile skeleton. London, Elsevier Academic Press.
    • Sutherland, L. and Suchey, J., (1991) Use of the Ventral Arc in Pubic Sex Determination. Journal of Forensic Sciences. 36(2), 13051J. Available from: doi:10.1520/jfs13051j.
    • Todd, T., (1921). Age changes in the pubic bone. American Journal of Physical Anthropology. 4(1), 1-70. Available from: doi:10.1002/ajpa.1330040102
    • Trotter, M., (1970). Estimation of stature from intact long limb bones, in Stewart, T.D. (ed.), Personal Identification in Mass Disasters: National Museum of Natural History, Washington, 71-83.

    Appendices

    Appendix A

    Feature

    Measurement (mm)

    Cranial length

    187.22

    Cranial breadth

    111.47

    Basion-bregma height

    138.67

    Bizygomatic breadth

    131.39

    Basion prosthion length

    121.63

    Nasion-prosthion line

    68.21

    Maxillo-alveolar breadth

    67.25

    Height associated with processus mastoideus

    36.67

    These measurements were then inputted to the formula below to find out sex from the skull.

    Discriminant function formula (Giles & Elliot, 1963):

    (Cranial length*3.107) + (Cranial breadth*-4.643) + (Basion-bregma height*5.786) + (bizygomatic breadth*14.821) + (Basion prosthion length*1.000) + (Nasion-prosthion line*2.714) + (Maxillo-alveolar breadth*-5.179) + (Height of this processus mastoideus*6.071)

    If result is larger than 2676.39, the individual is male, if smaller than 2676.39, the individual is female.

    Appendix B